"Two-stage Sparse Representation Clustering for Dynamic Data Streams" —Supplementary Document

Jie Chen, *Member, IEEE,* Zhu Wang, Shengxiang Yang, *Senior Member, IEEE,* Hua Mao

I. PROOF OF THEOREM [1](#page-0-0)

In this section, we prove Theorem [1](#page-0-0) in the paper regarding the optimization program

$$
\min_{\mathbf{Z}, \mathbf{D}} \|\mathbf{Z}\|_{0} + \frac{\alpha}{2} \|\mathbf{X} - \mathbf{D}\mathbf{Z}\|_{F}^{2} + \frac{\beta}{2} \|\mathbf{D}\|_{F}^{2}
$$
\n
$$
s.t. \quad diag(\mathbf{Z}) = \mathbf{0}
$$
\n(1)

Given the fixed J_{k+1} , Z_{k+1} is updated by the following scheme:

$$
\mathbf{Z}_{k+1} = \min_{\mathbf{Z}_{k+1}} \frac{1}{\mu_k} ||\mathbf{Z}_{k+1}||_0 + \frac{1}{2} ||\mathbf{Z}_{k+1} - \left(\mathbf{J}_{k+1} + \frac{\mathbf{Y}_k}{\mu_k}\right)||_F^2,
$$

$$
\mathbf{Z}_{k+1} \leftarrow \mathbf{Z}_{k+1} - d(\mathbf{Z}_{k+1}).
$$
 (2)

The hard thresholding operator $\mathcal{H}_{\sqrt{\lambda}}(x)$ is defined as follows [\[1\]](#page-1-0):

$$
\mathcal{H}_{\sqrt{\lambda}}(x) = \begin{cases} 0, & if \quad |x| \le \sqrt{\lambda} \\ x, & if \quad |x| > \sqrt{\lambda} \end{cases}
$$
 (3)

The closed-form solution of the first part of [\(2\)](#page-0-1) is obtained using the operator H :

$$
\mathbf{Z}_{k+1} = \mathcal{H}_{\sqrt{\frac{1}{\mu_k}}} \left(\mathbf{J}_{k+1} + \frac{\mathbf{Y}_k}{\mu_k} \right). \tag{4}
$$

Theorem 1 *The convergence condition* $\left\| \mathbf{Z}_{k+1} - \mathbf{J}_{k+1} \right\|_{\max}$ $< \varepsilon$ *will eventually be satisfied as* k *increases if* ρ *and* µ *satisfy the following conditions:*

$$
\rho > 2 \quad and \quad \mu > 0
$$

where k *represents the number of iterations and* ε *is a small positive number, e.g.,* $\varepsilon = 10^{-4}$.

Proof Given the optimal \mathbf{Z}_k , \mathbf{J}_k and \mathbf{D}_k at the k-th iteration, *where* $k > 1$ *, we continue to optimize* \mathbf{Z}_{k+1} *and* \mathbf{J}_{k+1} *by fixing* \mathbf{D}_k *and* \mathbf{Y}_k *at the* $(k+1)$ *-th iteration. According to* [\(4\)](#page-0-2), we know that \mathbf{Z}_{k+1} has a closed-form solution. Thus, we *have the following equality:*

$$
\|\mathbf{Z}_{k+1} - \mathbf{J}_{k+1}\|_{\max} = \left\|\mathcal{H}_{\sqrt{\frac{1}{\mu_k}}}\left(\mathbf{J}_{k+1} + \frac{\mathbf{Y}_k}{\mu_k}\right) - \mathbf{J}_{k+1}\right\|_{\max}
$$
(5)

J. Chen is with the College of Computer Science, Sichuan University, Chengdu 610065, China (E-mail: chenjie2010@scu.edu.cn).

Z. Wang is with the Law School, Sichuan University, Chengdu 610065, China (E-mail: wangzhu@scu.edu.cn).

S. Yang is with the School of Computer Science and Informatics, De Montfort University, Leicester LE1 9BH, U. K. (e-mail: syang@dmu.ac.uk).

H. Mao is with the Department of Computer and Information Sciences, Northumbria University, Newcastle, NE1 8ST, U. K. (e-mail: hua.mao@northumbria.ac.uk).

Suppose $\rho > 2$ and $\mu > 0$, and we get $\mu_k \to \infty$ when $k \to \infty$ according to $\mu_k = \rho \mu_{k-1}$. This indicates that we will *obtain*

$$
\mathcal{H}_{\sqrt{\frac{1}{\mu_k}}}\left(\mathbf{J}_{k+1} + \frac{\mathbf{Y}_k}{\mu_k}\right) = \mathbf{J}_{k+1} + \frac{\mathbf{Y}_k}{\mu_k}
$$

as k *steadily increases. According to* [\(5\)](#page-0-3)*, we get*

$$
\begin{aligned}\n\|\mathbf{Z}_{k+1} - \mathbf{J}_{k+1}\|_{\max} &= \left\|\frac{\mathbf{Y}_k}{\mu_k}\right\|_{\max} \\
&= \left\|\frac{\mathbf{Y}_{k-1} + \mu_{k-1}(\mathbf{Z}_k - \mathbf{J}_k)}{\mu_k}\right\|_{\max} \\
&\le \left\|\frac{\mathbf{Y}_{k-1}}{\mu_k}\right\|_{\max} + \left\|\frac{\mu_{k-1}(\mathbf{Z}_k - \mathbf{J}_k)}{\mu_k}\right\|_{\max} \\
&= \left\|\frac{\mathbf{Y}_{k-1}}{\rho \mu_{k-1}}\right\|_{\max} + \left\|\frac{\mathbf{Z}_k - \mathbf{J}_k}{\rho}\right\|_{\max}.\n\end{aligned}
$$

Thus,

$$
\|\mathbf{Z}_{k}-\mathbf{J}_{k}\|_{\max}\geq \frac{\rho}{2}\|\mathbf{Z}_{k+1}-\mathbf{J}_{k+1}\|_{\max}.
$$

Then,

$$
\|\mathbf{Z}_{k} - \mathbf{J}_{k}\|_{\max} - \|\mathbf{Z}_{k+1} - \mathbf{J}_{k+1}\|_{\max}
$$

$$
\geq \left(\frac{\rho}{2} - 1\right) \|\mathbf{Z}_{k+1} - \mathbf{J}_{k+1}\|_{\max}
$$

According to $\left\| \mathbf{Z}_{k+1} - \mathbf{J}_{k+1} \right\|_{\max} > 0$ *and* $\rho > 2$ *, we get*

$$
\left\|\mathbf{Z}_{k}-\mathbf{J}_{k}\right\|_{\max}-\left\|\mathbf{Z}_{k+1}-\mathbf{J}_{k+1}\right\|_{\max}>0
$$

when $\mathbf{Z}_k - \mathbf{J}_k \neq 0$. This means there exists a certain k with *two conditions, i.e.,* $\rho > 2$ *and* $\mu_1 > 0$ *, such that the following inequality holds:*

$$
\|\mathbf{Z}_{k+1}-\mathbf{J}_{k+1}\|_{\max}\leq\varepsilon,
$$

where $\mu = \mu_1$ *. Hence, convergence will eventually be achieved as* k *gradually increases if* $\rho > 2$ *and* $\mu > 0$.

II. PROOF OF THEOREM [2](#page-0-4)

In this section, we prove Theorem [2](#page-0-4) in the paper.

Theorem 2 *Suppose that convergence is achieved after the* k*th iteration in Algorithm 1. The sparsity ratio (SR) of a matrix* Z is defined as $SR(\mathbf{Z}_k) = \frac{\|\mathbf{Z}_k\|_0}{num(\mathbf{Z}_k)}$, where $num(\mathbf{Z}_k)$ is the *number of elements in* \mathbf{Z}_k . The SR of $\mathbf Z$ will always remain *stable, i.e.,* $|SR(\mathbf{Z}_{k+1}) - SR(\mathbf{Z}_k)| < \varepsilon$, after k iterative *computations, if*

$$
\mu_{k-1} > 1 \quad and \quad \rho > 1
$$

where $\left\| \mathbf{Z}_k \right\|_0$ counts the number of nonzero entries in the *matrix* \mathbf{Z}_k , $\varepsilon = 1e^{-6}$ *and* $k > 1$.

Proof Let \mathbf{Z}_{min}^{k+1} be the minimum absolute value among all *elements except zeros in the matrix* \mathbf{Z}_{k+1} *. According to* [\(3\)](#page-0-5), *we have:*

$$
\mathbf{Z}_{min}^{k+1} > \sqrt{\frac{1}{\mu_k}},
$$

where $\mathbf{Z}_{k+1} = \mathcal{H}_{\sqrt{\frac{1}{\mu_k}}}$ $\left(\mathbf{J}_{k+1} + \frac{\mathbf{Y}_{k}}{\mu_{k}}\right)$. Suppose Algorithm 1 *converges after the* k*-th iteration, and so*

$$
\mathbf{Z}_{k+1} \approx \mathbf{J}_{k+1}.
$$

Because $\mathbf{Z}_{min}^k > \sqrt{\frac{1}{\mu_{k-1}}}$ and $\mu_k > \mu_{k-1} > 1$, the number of *nonzero elements in* Z ^k+1 *remains unchanged after the* k*-th iteration. This indicates that the SR of* Z *remains stable, i.e.,* $|SR(\mathbf{Z}_{k+1}) - SR(\mathbf{Z}_k)| < \varepsilon$ *at least before the k-th iteration.* □

REFERENCES

[1] T. Blumensath and M. E. Davies, "Iterative thresholding for sparse approximations," *J. Fourier Anal. Appl.*, vol. 14, no. 5, pp. 629–654, Sept. 2008.