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I. PROOF OF THEOREM 1

In this section, we prove Theorem 1 in the paper regarding
the optimization program

min
Z,J,W

∥Z∥0 +
λ

2

∥∥WTX−WTDJ
∥∥2
F

s.t. WTXXTW = Im, J = Z− diag (Z) .

(1)

Given the fixed Jk+1 and Wk+1, Zk+1 is updated by the
following objective function:

Zk+1 = min
Zk+1

1

µk
∥Zk+1∥0 +

1

2

∥∥∥∥Zk+1 −
(
Jk+1 +

Yk

µk

)∥∥∥∥2
F

.

(2)

Given a positive number λ > 0, the hard thresholding operator
T√λ (Y) is defined as follows [1]:

T√λ (x) =

{
0, if |x| ≤

√
λ

x, if |x| >
√
λ

(3)

where Y ∈ Rm×n is a matrix and x represents an element of
Y. The closed-form solution of (2) is obtained by using the
operator T :

Zk+1 = T√ 1
µk

(
Jk+1 +

Yk

µk

)
. (4)

Theorem 1 The convergence condition ∥Zk − Jk∥max < ε
will eventually be satisfied as k increases if ρ and µ satisfy
the following conditions:

ρ > 2 and µ > 0

where k represents the number of iterations and ε is a small
positive number, e.g., ε = 10−4.
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Proof According to (3), Zk+1 has a closed-form solution in
(2). Thus, we have:

∥Zk+1 − Jk+1∥max =

∥∥∥∥T√
1

µk

(
Jk+1 +

Yk

µk

)
− Jk+1

∥∥∥∥
max

.

Suppose that ρ > 2 and µ > 0, and we obtain µk → ∞ when
k → ∞ according to µk = ρµk−1. This indicates that we will
obtain

T√
1

µk

(
Jk+1 +

Yk

µk

)
= Jk+1 +

Yk

µk

as k steadily increases. Thus, we have

∥Zk − Jk∥max − ∥Zk+1 − Jk+1∥max

=

∥∥∥∥Yk−1

µk−1

∥∥∥∥
max

−
∥∥∥∥Yk

µk

∥∥∥∥
max

=
ρ∥Yk−1∥max − ∥Yk∥max

µk

=
ρ∥Yk−1∥max − ∥Yk−1 + µk−1 (Zk − Jk)∥max

µk
.

In addition, we obtain

ρ∥Yk−1∥max − (∥Yk−1∥max + ∥µk−1 (Zk − Jk)∥max)

= (ρ− 1) ∥Yk−1∥max − µk−1 ·
∥∥∥∥Yk−1

µk−1

∥∥∥∥
max

= (ρ− 2) ∥Yk−1∥max

> 0.

It is easy to see that the following inequality holds:

∥Yk−1∥max + ∥µk−1 (Zk − Jk)∥max

≥ ∥Yk−1 + µk−1 (Zk − Jk)∥max.

Hence,

∥Zk − Jk∥max − ∥Zk+1 − Jk+1∥max > 0.

This means there exists a certain k with two conditions, i.e.,
ρ > 2 and µ1 > 0, such that the following inequality holds:

∥Zk+1 − Jk+1∥max ≤ ε

where µ = µ1. Hence, convergence will eventually be achieved
as k gradually increases if ρ > 2 and µ > 0. □
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II. PROOF OF THEOREM 2

In this section, we prove Theorem 2 in the paper. We
consider a general form of the l2,1-norm optimization problem:

f
(
Zl

)
= min

Zl

∥∥Zl
∥∥
2,1

+
β

2

∥∥Cl −ClZl
∥∥2
F

s.t. diag
(
Zl

)
= 0

(5)

where β > 0 is a parameter. Problem (5) is a convex
optimization problem. Let

∂f
(
Zl

)
∂W

= 0 (6)

and we have

Zl =

(
1

β
Σ+ClTCl

)−1

ClTCl (7)

where Zl =
[
zr1, z

r
2, ..., z

r
i , ..., z

r
n1

]T
and Σ ∈ Rn1×n1 is a

diagonal matrix whose diagonal entries are given by 1

∥zr
i ∥2

.

To prove Theorem 2, we need to prove Lemma 1.

Lemma 1 For two matrices A ∈ Rd×m and B ∈ Rm×n, the
following inequality holds:

∥AB∥2F ≤ ∥A∥2F ∥B∥2F .

Proof First, we have

∥AB∥2F = tr
(
ATABBT

)
by the definition of the trace function.

Second, we want to prove that

tr
(
ATABBT

)
≤ tr

(
ATA

)
tr

(
BBT

)
(8)

which implies that ∥AB∥2F ≤ ∥A∥2F ∥B∥2F . It is easy to see
that ATA and BBT are positive semidefinite and symmet-
ric matrices. Using the singular value decomposition (SVD)
results of ATA and BBT , we obtain

ATA = UAΣAUT
A,

BBT = UBΣBU
T
B,

(9)

where UA and UB are unitary matrices, and ΣA and ΣB

are diagonal matrices whose diagonal elements are singular
values of ATA and BBT , respectively. The singular values
of ATA and BBT are all nonnegative. Then,

tr
(
ATABBT

)
= tr

(
UAΣAUT

AUBΣBU
T
B

)
≤ tr

(
UT

BUAΣAUT
AUB

)
tr (ΣB)

= tr
(
UAΣAUT

A

)
tr

(
UBΣBU

T
B

)
= tr

(
ATA

)
tr

(
BBT

)
.

(10)

Hence,
∥AB∥2F ≤ ∥A∥2F ∥B∥2F .

□

The proof of Theorem 2 is motivated by a feature selection
method [2].

Theorem 2 The objective value of Equation (7) will mono-
tonically decrease until convergence to the global optimum of
Problem (5).

Proof Suppose that Zl
t+1 is the global optimal solution to

Problem (5), i.e.,

Zl
t+1 = arg

Zl

min
diag(Zl)=0

∥∥Zl
∥∥
2,1

+
β

2

∥∥Cl −ClZl
∥∥2
F
.

Problem (5) is a convex optimization problem, which indicates
that ∥∥Zl

t+1

∥∥
2,1

+
1

β

∥∥Cl −ClZl
t+1

∥∥2
F

≤
∥∥Zl

t+1

∥∥
2,1

+
1

β

∥∥Cl −ClZl
t

∥∥2
F
.

Thus, ∥∥Cl −ClZl
t+1

∥∥2
F
≤

∥∥∥Cl −ClZt
l
∥∥∥2
F
.

According to Lemma 1, we have∥∥I− Zl
t+1

∥∥2
F
≤

∥∥∥I−ClZt
l
∥∥∥2
F

where I is an identity of size nl × nl. Then, we have the
following inequality:

tr
(
Zl

t+1

(
Zl

t+1

)T − Zl
t

(
Zl

t

)T) ≤ tr
(
2
(
Zl

t+1 − Zl
t

))
.

Using the constraint diag
(
Zl

)
= 0 in Problem (5), we obtain

tr
(
Zl

t+1

(
Zl

t+1

)T − Zl
t

(
Zl

t

)T) ≤ 0).

Then
n∑

i=1

∥∥∥(zi)l
t+1

∥∥∥2
2
≤

n∑
i=1

∥∥∥(zi)l
t

∥∥∥2
2

where
(
zi
)l
t+1

and
(
zi
)l
t

are the i-th row vectors of Zl
t+1 and

Zl
t, respectively. Hence,∥∥Zl

t+1

∥∥
2,1

≤
∥∥Zl

t

∥∥
2,1

.

This means that the objective value of Equation (7) will
monotonically decrease at each iteration. At the (t+ 1)-
th iteration, Equation (7) holds for given Zl

t+1 and Σl
t+1.

Consequently, the objective value of Equation (7) will converge
to the global optimum of Problem (5). □
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