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Technical Appendices
Theorem 1 Assume that there are ng graphs and K neg-
ative samples for each graph, where sim (hi,h

w
k ) = 0

(1 ≤ k ≤ K). Given two conditional distributions hw
i and

hs
i relative to hi, denoted as p (hw

i |hi) and p (hs
i |hi), re-

spectively, and the distribution divergence Ld in Eq. (11),
the following inequality holds:

Ld ≥ log (K + 1)− 1

τ

if K satisfies the following condition, i.e.,

K ≥ e
1
τ − 1

where τ is a temperature parameter.

Proof of Theorem 1
Proof Let hi, hw

i and hs
i be the ith columns of H, Hw

and Hs, respectively. Given two conditional distributions
p (hw

i |hi) and p (hs
i |hi), we have

0 < p (hw
i |hi) ≤ 1 and 0 < p (hs

i |hi) ≤ 1

where 1 ≤ i ≤ ng . Let

l = p (hw
i |hi) log (p (h

s
i |hi))

and we obtain

l ≤ 1

τ
− log (K + 1) .

if

K ≥ e
1
τ − 1

Hence,

Ld ≥ log (K + 1)− 1

τ
.
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Analysis of Augmented Views
Definition 1 (Sufficient Augmented View) Given an en-
coder f , an augmented view vsuf is sufficient in contrastive
learning if and only if I (v; y) = I (f (vsuf ) ; y), where v
represents an original view, and I(· ; ·) denotes mutual in-
formation.

Intuitively, the augmented view vsuf is sufficient for pre-
dicting the target label y if all the information in vsuf is
preserved at approximately v during the graph embedding
encoding phase. Thus, f (vsuf ) contains all the shared in-
formation between vsuf and v. This indicates that f (vsuf )
keeps all the task-relevant information from the original
view.
Definition 2 (Minimal Sufficient Augmented View)
Among all sufficient augmented views, a view vmin is
minimal if and only if

I (f (vmin) ; y) ≤ I (f (vsuf ) ; y)

for all sufficient views vsuf.

Theorem 2 Graph representations obtained by GNNs are
employed to predict the target label y in a graph classifi-
cation task. The minimal sufficient view vmin contains less
task-relevant information from the original view v than other
sufficient view vsuf . Thus, we have

I (vsuf; y) ≥ I (f(vmin); y)

Proof
I (f(vsuf), f(vmin); y)

=I (f(vmin); y) + I (f(vsuf ); y|f(vmin))

⇒I (f(vsuf); y) = I (f(vmin); y) + I (f(vsuf ); y|f(vmin))

⇒I (vsuf; y) = I (f(vmin); y) + I (f(vsuf ); y|f(vmin))

⇒I (vsuf; y) ≥ I (f(vmin); y)

Among all sufficient augmented views, the minimal suf-
ficient view vmin contains the least information about vsuf .
It is assumed that vmin contains only the information shared
between vsuf and v. This implies that vmin eliminates the
information that is not shared between vsuf and v. However,
some task-relevant information might not be present in the



(a) IMDB-B: 30% (b) IMDB-B: 50% (c) IMDB-B: 70%

(d) IMDB-B: 30% (e) IMDB-B: 50% (f) IMDB-B: 70%

Figure 1: Graph classification results with different α and β combinations across different percentages of training samples.

Table 1: Statistics of the graph datasets.

Datasets #Class #Graph Avg. #Node Avg. #Edge

MUTAG 2 188 17.93 19.79
PROTEINS 2 1113 39.06 72.82
IMDB-B 2 1,000 19.77 96.53
NCI1 2 4, 110 29.87 32.30
RDT-B 2 2,000 429.63 497.75
RDT-M5K 5 4,999 508.52 594.87
COLLAB 3 5,000 74.49 2,457.2
GITHUB 2 12,725 113.79 236.64

shared information between views (Wang et al. 2022; Tian
et al. 2020). According to Theorem 2, vsuf contains more
task-relevant information. CDL is an end-to-end graph rep-
resentation learning model. Therefore, vsuf provides more
valuable information than does vmin for CDL.

Let vmin and vsuf be a strongly augmented view and a
weakly augmented view, respectively. The view vmin in-
troduces diversity to graph-structured data, which can en-
hance the generalizability of GNNs. In contrast, the view
vsuf contains nonshared information between vmin and v,
which may be crucial for graph classification tasks. This
demonstrates that the distribution divergence Ld in Eq. (11)
effectively leverages both the diversity and the quantity of
data provided by graph-structured data augmentations, while
preserving the intrinsic semantic information.

Experimental details
In this section, we evaluate the performance of the proposed
CDL method with benchmark datasets. All the experiments
are conducted on a Linux workstation with a GeForce RTX
4090 GPU (24 GB caches), an Intel(R) Xeon(R) Platinum
8336C CPU and 128.0 GB of RAM.

Experimental settings
The statistics of the eight benchmark graph datasets are sum-
marized in Table 1. The numbers of classes and graphs in
these graph datasets range from 2 to 5 and 188 to 12,725, re-
spectively. In particular, the node masking scheme is applied
to both the weak and strong augmentations of the graph-
structured data.

Parameter Settings The learning rate for the proposed
CDL model was empirically set to 5e−3. The size of the
hidden layers was chosen from the set {128, 64}. The batch
size of the graphs was set to 128 during training and test-
ing, with a dropout of 0.2. The numbers of GNN and MLP
layers ranged from 2 to 3 and 1 to 2, respectively. The
overall loss of the proposed CDL model in Eq. (14) in-
volves two parameters, α and β, which were selected from
{0.01, 0.05, 0.1, 0.5, 1} via a grid search strategy. For a fair
comparison, the best results of all competing methods are
reported after tuning their parameters.

Parameter Sensitivity Analysis
We first perform parameter sensitivity analysis on two crit-
ical parameters, α and β, from Eq. (14). These param-



Table 2: Graph classification results (average accuracy (%) ± standard deviation (%)) on pairs of strongly augmented views
with eight benchmark graph datasets.

Label Methods MUTAG PROTEINS IMDB-B NCI1 RDT-B RDT-M5K COLLAB GITHUB

30%

CDL0.4 87.28±7.48 75.48±5.32 72.30±5.03 78.10±2.21 90.50±1.84 54.07±2.19 78.90±2.01 69.53±1.31
CDL0.5 85.12±9.92 75.20±3.14 71.40±4.12 78.00±2.69 90.05±1.46 53.93±2.26 78.50±0.84 69.29±1.27
CDL0.6 85.70±7.89 75.48±3.73 70.60±6.55 77.47±2.22 89.90±1.45 54.01±2.31 78.44±1.47 69.35±1.19
CDL0.7 85.03±8.77 75.39±3.89 70.40±5.85 77.18±1.69 90.35±2.15 53.89±2.55 78.26±2.07 69.27±1.39
CDL 89.36±6.14 76.74±4.51 74.60 ± 4.25 79.37 ±1.62 91.15±1.76 55.31±1.65 79.44±1.82 70.15±1.27

50%

CDL0.4 88.80±7.09 75.12±4.13 73.40±5.50 78.10±1.82 90.95±1.77 55.09±1.56 80.20±2.12 70.30±0.80
CDL0.5 88.27±7.09 74.94±4.66 73.30±5.64 77.20±2.21 91.00±1.89 55.87±2.09 79.94±2.01 70.23±1.27
CDL0.6 88.33±8.21 74.49±3.27 72.60±5.82 77.98±1.61 90.70±2.25 55.79±1.56 79.76±2.04 69.60±1.14
CDL0.7 88.30±8.31 74.58±3.54 72.30±4.67 75.89±1.34 90.50±2.54 55.17±2.06 78.94±1.50 69.88±2.12
CDL 89.94±8.76 76.10±2.80 74.90±3.70 79.08±1.86 92.05±2.14 56.51±2.32 80.96±1.29 70.83±1.13

70%

CDL0.4 87.81±6.05 75.75±3.79 73.80±5.33 81.14±1.90 91.55±1.38 55.73±2.40 81.36±1.51 70.16±1.47
CDL0.5 87.28±8.97 75.39±3.37 73.40±5.64 80.51±1.43 91.60±1.71 54.89±2.24 81.28±1.69 70.15±1.15
CDL0.6 86.75±8.36 75.57±3.00 73.30±5.12 80.61±2.06 90.65±2.14 54.39±1.52 81.10±1.70 70.04±0.87
CDL0.7 85.70±7.89 74.76±3.12 72.90±5.76 80.66±1.74 90.50±2.15 53.17±2.44 80.82±1.71 69.88±1.48
CDL 89.91±7.30 77.27±3.62 74.90±5.63 82.36±1.52 92.35±1.63 56.65±1.87 82.36±1.72 71.06±1.17

eters were selected from the set {0.01, 0.05, 0.1, 0.5, 1}
for CDL. The remaining hyperparameters in the proposed
CDL method are determined by the parameter settings. Ow-
ing to space limitations, we conducted experiments using
two representative datasets, i.e., the IMDB-B and COL-
LAB datasets. Fig. 1 shows the graph classification results
with the IMDB-B and COLLAB datasets with different α
and β combinations across different percentages of training
samples, respectively. The classification results of the CDL
method fluctuate slightly with different α and β combina-
tions. This finding indicates that the proposed CDL method
usually achieves satisfactory classification results with rela-
tively wide ranges of α and β values.

Evaluation on Pairs of Strongly Augmented Views
The intrinsic semantic information in graph-structured data
may be disrupted when strong augmentations introduce sig-
nificant perturbations. However, strong augmentations sub-
stantially enhance the diversity of graph-structured data,
which in turn helps improve the generalization ability of
GNNs. We further evaluate the performance of the proposed
CMD method when applying only strong augmentations to
graph-structured data. The masking ratio of the node at-
tributes for the strong augmentation was selected from the
set {0.4, 0.5, 0.6, 0.7}. Specifically, each pair of strongly
augmented views on the graph-structured data shares the
same masking ratio. The proposed CDL method with mask-
ing ratios {0.4, 0.5, 0.6, 0.7} are denoted as CDL0.4, CDL0.5,
CDL0.6 and CDL0.7, respectively.

Table 2 shows graph classification results on pairs of
strongly augmented views. We observe that the average clas-
sification accuracy of the proposed CDL method generally
decreases as the masking ratio increases from 0.4 to 0.7.
For example, on three different percentages of the dataset
set, 30%, 50% and 70%, CDL improves the average clas-
sification accuracy by 2.08%, 1.14%, and 2.10% on MU-
TAG, and by 1.62%, 0.53%, and 0.91% on GITHUB, com-
pared to CDL0.4. As expected, CDL0.7 almost achieves the
lowest average classification accuracy at the masking ratio

of 0.7. The gap in average classification accuracy between
CDL and CDL0.7 has further widened. This demonstrates
that strong augmentations tend to disrupt the intrinsic se-
mantic information in graph-structured data. Moreover, the
proposed CDL method outperforms all its variants with dif-
ferent masking ratios. This empirically validates that condi-
tional distribution learning enhances the generalizability and
robustness of CDL by aligning the conditional distributions
of weakly and strongly augmented node embeddings given
the original node embeddings.

Discussion
Unlike data augmentation strategies in most existing graph
contrastive learning methods, the primary goal of data aug-
mentation in the proposed CDL method is to align the con-
ditional distributions of weakly and strongly augmented fea-
tures with the original features. The strong augmentations
in CDL introduce significant perturbations to the graph-
structured data. This enhances the diversity of node embed-
dings. Conditional distribution learning enhances the abil-
ity of the CDL model to capture intrinsic semantic infor-
mation. As a result, this approach significantly improves the
robustness and generalization of the CDL model, while ef-
fectively reducing the risk of disrupting intrinsic semantic
information. In contrast, data augmentation techniques in
other graph contrastive learning methods often lead to ambi-
guities that may compromise intrinsic semantic information.
Although CDL has demonstrated effectiveness in graph clas-
sification, there are still several limitations to be solved in
the future. For example, the estimation of the node masking
ratio for weak augmentation poses a significant challenge.
Furthermore, it would be worthwhile to integrate an adap-
tive augmentation scheme of the graph-structured data with
CDL. This potentially yields significant improvements in the
stability of computational performance.
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